Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.

نویسندگان

  • Ghazaleh Ghadimkhani
  • Norma R de Tacconi
  • Wilaiwan Chanmanee
  • Csaba Janaky
  • Krishnan Rajeshwar
چکیده

Solar photoelectrosynthesis of methanol was driven on hybrid CuO-Cu(2)O semiconductor nanorod arrays for the first time at potentials ~800 mV below the thermodynamic threshold value and at Faradaic efficiencies up to ~95%. The CuO-Cu(2)O nanorod arrays were prepared on Cu substrates by a two-step approach consisting of the initial thermal growth of CuO nanorods followed by controlled electrodeposition of p-type Cu(2)O crystallites on their walls. No homogeneous co-catalysts (such as pyridine, imidazole or metal cyclam complexes) were used contrasting with earlier studies on this topic using p-type semiconductor photocathodes. The roles of the core-shell nanorod electrode geometry and the copper oxide composition were established by varying the time of electrodeposition of the Cu(2)O phase on the CuO nanorod core surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.

Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two-step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one-dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a ...

متن کامل

C1jm10762c 9564..9569

Three-dimensional (3D) ZnO–CuO core-shell nanorod arrays have been synthesized by a three-step process on silicon (100) substrates. A hydrothermal method was used to grow 3D ZnO nanorod arrays, followed by deposition of Cu nanofilm using sputtering, which was oxidized subsequently at 400 C to form CuO shell surrounding ZnO nanorod core. The control over oxygen flow and pressure during the Cu na...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile...

متن کامل

Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs) is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene). A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 49 13  شماره 

صفحات  -

تاریخ انتشار 2013